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Preface 

The report entitled "Vibration Damping by a Nearly Continuous Distribution of 

Nearly Undamped Oscillators," NSWCCD-70-TR-1999-120 (April 1999) was submitted 

as a paper to be published in the Journal of Sound and Vibration. Two reviewers set upon 

this paper and I was asked to shorten and revise some of the arguments. Unfortunately, 

the reviewers failed to understand the gist of the paper, in part I suppose the blame is mine. 

Consequently, I decided to reiterate a major argument in the submitted paper and make it 

the center piece of the revised version. The letter I sent with the revised manuscript to the 

Chief American Editor of this Journal; Professor Soedel, is enclosed for your perusal. I 

thought some readers of the present report may enjoy a reprint of this revised version of the 

manuscript. 

Dear Professor Soedel: 

Enclosed is a condensed and revised version of the paper previously submitted for 
publication under the title "Vibration Damping by a Nearly Continuous Distribution of 
Nearly Undamped Oscillators." Since that submission, the paper was reviewed by two 
reviewers and I am in receipt of their reviews. The first reviewer admits that he is long- 
winded and, in addition, he is patronizing. For the long-windedness, he is forgiven. I am 
not going to review either his review or that of the second reviewer. It suffices to say, in 
response, that the issue has not been centered about whether an integral can or cannot be 
performed. The issue is more subtle than that: Has the integral been obtained legitimately 
and does that result make sense? The revised manuscript, enclosed herein, tries to make 
this very point clearer than the original manuscript did. This was particularly requested by 
the second reviewer. I also omitted, for now, the energetics of this complex structure. 
These will be submitted, in due course under separate cover. Thus, it may be possible that 
the reviewers have positively contributed. May I, nonetheless, apologize to the authors of 
Reference 1 (now Reference (5)). It was not my intention to torpedo their paper or imply 
that they are wrong. I said it then, and I repeat it now: Once the auxiliary condition of 
modal overlap is addressed and satisfied, References 1-6 are largely validated. I do 
believe, however, that this condition is implicitly made in all these references and, 
therefore, setting the loss factors of the satellite oscillators a priori to zero, is a violation of 
what has already been implied. 

IV 



I have no objection to this enclosed version of the paper being published as a letter, 
although, I would prefer a paper, subject to acceptance in the first place. The oversight of 
the auxiliary modal overlap condition has been circulating about for more than five years 
and, in spite of oral pleas, it has gone unnoticed. The convulsion over "where the energy 
went" is still an issue for some. It is time to lay it to rest. I hope this paper will do just 
that. 

Thank you for your interest and I await your decision in this matter. 

Sincerely yours, 

G. Maidanik 
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Abstract 

It has been claimed that induced damping can be derived from the coupling of a 

continuous distribution of undamped oscillators. This claim stems from the fact that the 

contribution to the damping of a master oscillator by a coupled set of continuously distributed 

satellite oscillators, is independent of the loss factors of the oscillators in this set. (The 

distribution is with respect to the frequency of resonance of the satellite oscillators in the set). 

In the determination of the induced damping, the transition from a discrete-to-a continuous 

distribution, however, cannot be achieved without the imposition of modal overlap on the 

distribution and on the inherent damping of the satellite oscillators. It is this imposition that 

ensures that the contribution to the damping by these satellite oscillators is intuitively real. The 

imposition forbids equating the loss factors of the satellite oscillators to zero just because their 

contribution to the surrogate damping — the induced damping — of the host master oscillator to 

which they are coupled, is independent of these loss factors. 



Introduction 

A central theme to a few publications is that a set of satellite oscillators attached to a 

master oscillator contributes to the damping of the master oscillator even if all the loss factors of 

the satellite oscillators in the set, are equal to zero [1-6] [cf. Fig. 1.] The satellite oscillators 

are numerable and their resonance frequencies are distributed on both sides of the resonance 

frequency of the master oscillator. The conclusion that a set of lossless satellite oscillators can, 

nonetheless, contribute to the damping of a master oscillator, has been supported by analyses 

that a priori assume the satellite oscillators to posses zero loss factors [4,5]. In contrast to the 

analysis presented here, some of the analyses; e.g., the analysis in Reference 5, are conducted 

in the time domain [3]. With respect to the material presented in this paper, whether the 

analysis is conducted in the time domain or in the frequency domain, is considered to be merely 

a matter choice, notwithstanding that in the case of a closely packed distribution of resonance 

frequencies of the satellite oscillators, the relaxation times involved may be quite long. In this 

case, to relate the results in the time domain to those in the frequency domain may require long 

times to capture the entire data [3]. 

In this present paper, a fundamental initial oversight that beset all these publications is 

brought to the attention of the reader. Admittedly, once that oversight is addressed, the 

remaining analyses and arguments in all these publications are largely validated; e.g., validated 

is the argument that specifically defined measure of the damping that is provided to the host 

master oscillator by a distribution of nearly lossless oscillators, is independent of the loss 

factors that account for the dampings in these oscillators. This independence does not, 

however, imply that individual loss factors that are equal to zero are admissible; indeed, 

individual loss factors that are not equal to zero are an essential condition on the validity of the 



analysis in the first place [2,7]. Moreover, the analysis of nearly continuous distribution of 

nearly undamped satellite oscillators brings insights into the manner by which the satellite 

oscillators contribute damping to the mechanical system comprising a hosting master oscillator 

and these satellite oscillators. In part, these insights are obscured in an analysis that is 

subjected a priori to limiting asymptotic conditions of negligibility and continuity; 

notwithstanding that such impositions may require careful consideration if apparent singular 

behaviors of the mechanical system are to be avoided. However, detailed considerations of this 

kind are to be presented under separate cover [8]. Here, as stated, the focus is on the linear 

equations of motion that describe the response of a complex structure comprising a master 

oscillator and a set of coupled satellite oscillators. The induced loss factor in the damping of 

the master oscillator is of particular interest. It is argued that the determination of the induced 

loss factor is readily achieved by replacing integration for the summation over satellite 

oscillators. However, such a replacement demands the obedience of an auxiliary relationship. 

This relationship imposes that a modal overlap condition be satisfied. A satisfied condition of 

modal overlap states that if the loss factors of the satellite oscillators are made to approach 

infinitesimal values, the number of these satellite oscillators must approach infinity at least at 

the same rate. This condition, then, precludes setting the loss factors of the satellite oscillators 

equal to zero a priori and in that sense, the imposition of the descriptive adjective "nearly" is 

meaningful. Conversely, it is asserted that adhocly replacing a summation by an integration 

renders the condition of modal overlap implicitly and a priori satisfied. The significance of 

these statements is that if the condition of modal overlap is satisfied, collectively the satellite 

oscillators possess enough damping to explain the physical presence of the induced loss factor. 

Then, inventing exotic mechanisms to account for the induced damping becomes moot. 



I.        The Formalism of a Discrete and of a Continuous Distribution of Resonance 

Frequencies. 

Consider the mechanical system comprising a master oscillator, with mass (M) and 

stiffness (K), that is coupled to a set of satellite oscillators. This mechanical system is 

sketched in Fig. 1 [1-6]. The (r)th satellite oscillator is defined by a mass (mr) and a 

stiffness (kr). The damping is assumed to be associated with the stiffness elements 

K = K0(l + i7]0) ; (K0/M)   =G)2
0   , (la) 

kr = kor(l+irir) ; (korlmr)  =co2
r  , (lb) 

where (r\0) and (Tjr) are loss factors. Each of these loss factors characterizes an individual 

oscillator and quantifies the dissipation that the oscillator, in isolation, can handle when 

externally driven. The linear equations of motion of the master oscillator in situ and of a typical 

satellite oscillator in situ are 

R 
[(iC0M) + (K/i(0)]Vo(C0) + X(kr/iC0)[Vo(C0)-Vr(0))] = Pe((D)   , (2) 

(icomr) Vr(CO) + (krliCO) [Vr{(0)- V0(CO)] = 0   , (3) 

respectively, where V0((D) and Vr(CO) are the responses of the mass (M) of the master 

oscillator and of the mass (J7lr) of the (r)th satellite oscillator, respectively, (R) is the 



number of satellite oscillators that are coupled to the master oscillator and P_ ((D) is the drive 

that is assumed applied externally to the master oscillator; the satellite oscillators are not driven 

externally [7]. [cf. Fig. 1.] The satellite oscillators, in Eqs. (2) and (3), are assumed 

uncoupled to each other; the satellite oscillators are coupled to the master oscillator only. The 

summation in Eq. (2) is over a set of oscillators, where, again, (R) is the number of satellite 

oscillators in the set. From Eqs. (2) and (3) one obtains 

Zo(0))Vo(C0) = Pe((0)   ;   Vr(CO) = B(y,Xr,T]r)V0(CO)    , (4) 

where 

z0(co) = (i(DM){i-(yr2[i-s(y)]-i(yy2lTi0 + ris(y)]} , (5) 

R 
is(y)-iris(y)] = (y)2 X A(y,mr,xr,7]r) 

l 

A(y,mr,xr,rir) = mrB(y,xr,r]r)  , (6) 

B(y,xr,rir) = (xr)2[(i+rfr)(xrf - iyf - iiiriy)2] 

{[(xr)2-(y)2f + [rir(xr)2frl   , (7) 

y = ((Olco0) ; mr = (mrlM) ; xr = (corlco0) ; \<r<R   .    (8) 

The quantity (Xr) defines the resonance frequency distribution of the satellite oscillators. It is 

emphasized that in the present paper this distribution, and not the spatial distribution of the 



satellite oscillators, is in reference. The satellite oscillators are attached on a single velocity 

platform; that platform constitutes the mass of the master oscillator. The velocity in the plane of 

the platform is uniform so that each attached sprung mass (satellite oscillator) perceives the 

same velocity at the point of attachment. Whether the spatial distribution of the sprung masses 

on the platform is made to coincide with the resonance frequency distribution is moot in this 

paper, [cf. Fig. 1.] In some publications variations on this theme are implied but are not 

always strictly defined. Thus, the problem of a priori assuming a spatially discrete distribution 

of satellite oscillators (sprung masses) versus a spatially continuous distribution was briefly 

discussed in Reference 8. In this reference the satellite oscillators all possess the same 

resonance frequency. In Reference 6, on the other hand, a single couple structure with 

multiple resonance frequencies is used. 

It may be useful to exemplify much of the analytical processes. For this purpose, two 

distinct resonance frequency distributions for the satellite oscillators; i.e., (Xr) as a function of 

(r), are depicted in Fig. 2. In Figs. 2a and 2b the resonance frequency distributions are [5,7] 

{(Orl(00) = Xr = [l + {l-2r}Y(R)T1'2   ;   l<r<R , (9a) 

and 

(CDrICD0) = Xr = r(l-r)"1   ;   l<r<R , (9b) 

respectively, where 

r = riR + lT1  ;   R = RiR + lT1  ;  7(Ä) = (//2Ä)<(1/2)   .        (10a) 



In keeping with References 7 and 5, a normalized mass distributions for the satellite oscillators; 

i.e., (mr) as a function of (r), are also introduced and displayed in Fig. 2. In Figs. 2c and 

2d the normalized mass distributions are 

_ R 
mr =(MS/M)(R)-1   ;   (Ms/M) = £ fnr   , (9c) 

1 

mr =(Ms/M)[2/7Z(R + l)][(l-r)2+(r)2T1   ; 

R  _ 
(Ms/M) = X rnr   , (9d) 

1 

respectively, where (Ms IM) is the mass ratio of the total mass of the satellite oscillators to 

that of the mass of the master oscillator. In this paper this mass ratio is set at one-tenth; 

(Ms/M) = (lO)"1. 

The impedance Zo(C0), stated in Eq. (5), comprises the self-impedance (iCOM) 

[1- ()0~2(1 + zTfo)] of the master oscillator and the sum over the impedances contributed by 

the satellite oscillators to which the master oscillator is coupled [7]. Typically, the impedance 

(iCOM) A(y,mr,Xr,rir) is that contributed by the (r)th oscillator; it is a function of the 

normalized frequency y = (CO/ C0o) and is a functional of the normalized mass distribution 

YYlr = (mr IM), the normalized resonance frequency Xr = (COr I (00) and the loss factor 

(T]r) of the {T)th satellite oscillator. As Eqs. (la) and (8) state, the normalizing frequency 

(C00) is the resonance frequency of the master oscillator in isolation. Under the same cover, 

the response Vr(CO), of the mass (mr) of the {r)th satellite oscillator, is related to the 

response V0(CO), of the mass (M) of the master oscillator, by a factor that is a function of the 



normalized frequency y = {(Ol (00) and is a functional of two of the three parameters; 

namely, of (Xr) and {T]r). The relationship between Vr{CO) and V0(CO) is stated in Eq. (4). 

Clearly (r) is a discrete variable. Can an artificially assigned (r) set to be a continuous 

variable? This proposed continuity of (r) is exemplified by the solid-line curves in Fig. 2. It 

is convenient, in this connection, to normalize (scale) the continuous variable (r) by the 

number of satellite oscillators (R) plus unity (1), as suggested by Eqs. (9) and (10). The 

normalized (r) is designated (r) and the dependent parameters are then expressed in the forms 

mr=*m(r) ; xr=*x(r) ;   77r => ?7(F)   . (11) 

The scaled forms of (JCr); namely, X(r), in Eqs. (9a) and (9b), are depicted as functions of 

(r) in Figs. 3a and 3b, respectively. In this vein, Eqs. (4)-(7) may be recast, without further 

ado, in the forms 

Zo(0))Vo(C0) =  Pe(CO)   ;    V(r,CO) = B{y, X(f), 7]{f))V0{(0)   ,       (12) 

where 

z0(co) = (icoM){i-(yr2n-s(y)]-i(yr2[ri0+T]s(y)]} (13) 

C(R+£) __ 
[s(y)-iris(y)] = W2J(£)     dr A{y, m(r), x(r), T](r)}   ; 

A{y, rn(r), x(r), r\{r)} = m(r) B{y, x(r), rj(r)}   , (14a) 



[s(y)-i7is(y)] = O02J(g)    df A{y, //(f), *(r), 77c)} ; 

A{y, jU(r), X(F),  77(F)} = fl(r) B{y, X(r), 77(F)}   , (14b) 

B{y, x(r), 7](r)} = {x{f)f [(1 + {77(F)}2) {x{r)}2-{y?-iT](r)(y)2} 

{[{x(F)}2-(>;)2]2 + [77(F){x(F)}2]2}-1   , (15) 

mr=>/i(F) (R + l)'1  ,  £ = EiR + iy1   R = i?(i? + l)_1     . (10b) 

The parameter (£) designates the end-effects that are introduced in the transition from the 

discrete to the continuous domains;   e.g., £  = £(/? + l)_1, with £ ~ 1/2, say. 

[cf. Fig. 2.] 

Afresh, consider the mechanical system comprising of a master oscillator, with mass 

(Af) and stiffness (K), that is coupled to a set of satellite oscillators, as defined in Eq. (1) and 

sketched in Fig. 1. However, now the resonance frequencies {(0(0) of the satellite 

oscillators are assumed to be a priori continuously, but not necessarily uniformly, distributed in 

the interval 0 < £ < 1 [5]. Example of two typical resonance frequency distributions; i.e., 

[JC(f)l as functions of (£), are depicted in Fig. 3. In Figs. 3a and 3b the normalized 

resonance frequency distributions are 

[<D(0/CDO] = x(0 = [i + (i-207Wr(1/2) ; (*)<(!/2) ; 0<C<1  ,   (16a) 

[ö)(C)/6)0] = x(0 = (Od-O"1 ; o<£<i , (16b) 



respectively, and y(R) is defined in Eq. (10) [5, 7]. [cf. Eqs. (9a) and (9b), respectively, and 

Eq. (10)]. The corresponding normalized mass distributions /l(£) of the satellite oscillators 

are [5 7,] 

ß(0 =(Ms/M)(Rr  ;   0<£<1   , (16c) 

\2 , ,r\2r~l jU(0 =(Ms/M)(2/7t)[(i-cr+(OTl   ;  o<c<i  , (16d) 

[cf. Eqs. (9c) and (9d), respectively, and Eq. (10).] The linear equations of motion of the 

master oscillator insitu and of a typical satellite oscillator insitu are 

z0((o) V0«D) = Pe((D)  ;   v(£fi>) = B{y, x(0, m)) Vo(0» ,    (17) 

where 

z0(co) = {icoM){\ - (yr2[i - sc(y)] - KyT2Wo + VsiyK}  . (18) 

[sc(y)-iri$(y)] = (y)2 J0 d; A{y, JLI(0, *(£), rj(0) ; 

A{(y, jU(0, x(0.1(0} = WW, *(0, ^(0) , (19) 

10 



2     /,A2       ,•-, B{y, x(o, wo) = wor [{i+ T(OH*(0} -or -woor] 

{[{*(0}2 - O02f + WO WO}2]2}"1. (20) 

y = (CD/a)0)  ;  x(0 = [fiXO/fi>o]  ;  °<C<1   • (21) 

A question arises: Under what conditions can the linear Eqs. (4)-(7) be asymptotically 

circumvented into the linear Eqs. (12)-(15) and Eqs. (12)-(15) into the linear Eqs. (17)-(20), 

respectively, and are these conditions significant? This question has been partially answered in 

previous publications; in this paper, a more definitive answer is sought [2,7]. However, prior 

to this pursuit, one may inquire: Suppose these asymptotic circumventions were found 

permissible as these are stated, can one perform, a priori, the integration in the continuous 

domain that, in fact, replaces the summation in the discrete domain? 

11 



II.       Evaluation of the Induced Loss Factor [7|y (y)] in Eqs. (13)-(15) 

The following quantities are defined first 

Z(r) = [X(r)/y];   [d{X(r)}Idr]~l = /(F)     . (22) 

Then, from Eqs. (13) - (15), one obtains 

CZ(R+£) 
risiy) = (yflfä     dz(r)[f(r)m][{z(r)}2ri(r)]   . 

{[{Z(r)}2-l]2+[{z(r)}277(r)]2r1   . (23) 

Were the factor [/(F)iü(r)] to be a well behaved function of (F) in the range £ < r < R + £ 

and were 77(F) to be small compare with unity, as a function of (F) in that same range, the 

integral in Eq. (23) immediately yields the result 

%(y) = (X/2)(y)3[f(r0)/I(r0)] ;  z(r0) = l ; (£)<r0<(R+£)   ,   (24) 

which, clearly, is independent of Tftr) provided these loss factors are set small compared with 

unity in the range (£) < r < R + £ [2]. [The well behaved function [f(r)ß( r)] of (r) and 

the smallness of the loss factor 77(F) as compared with unity, both in the range 

(£) < F < (R + £) are specified as such in order to ensure that the contribution to the integral 

by the resonance peaks of the integral at Z(r)=4 are dominant. Were contributions by the 

peaks, in certain ranges of (y), not to be dominant, the integral, as just performed will 

naturally underestimate the value of the integral in these ranges of (y). In the present paper, 

situations that may fall into this category are neither evaluated nor specifically considered. 

12 



Indeed, this is the reason that only the induced damping is evaluated and considered in this 

paper [8].] Employing the normalized resonance frequency distributions stated in Eqs. (9a) 

and (9b), one finds from Eqs. (22) and (24) that 

f(To) = [WOO3]""1   ;   [l + (y/2)]-(1/2)<^<[l-(7/2)r(1/2)  ,       (25a) 

f(r0) = (1 + yT2 ; (2R + lT1<y<(2R + l) , (25b) 

respectively, where (y) is defined in Eq. (10) and is chosen, herein, to be equal to (0.6). 

Similarly, employing the normalized mass distributions stated in Eqs. (9c) and (9d), one finds 

from Eqs. (22) and (23) that 

jH(r0)=^(Ms/M)(Rr1  ; (fi) < r0  < (R+S) , (25c)     " 

ji(r0)=>(Ms/M)(2/n)(l+y)2 [l+OO2]"1 ; (£) < r0 < (R+e) . (25d) 

From Eqs. (24) and (25) one readily derives, for the two examples herein considered, the 

results 

risiy) = (Ms /M)[K/{2y(R)}] ; [l + (7/2)]-(1/2) < y< [l-(7/2)r(1/2) , (26a) 

ffcOO = (Ms/MKyftt + iy)2]-1   ; [(2Ä + 1)]"1  < y < [(2R + 1)] . (26b) 

It is recognized that Tjs(y) is largely meaningful only at and in the vicinity of (y) equal to 

unity; y ~ 1, so that the restricted range of (y) in Eq. (26) is not physically significant. For 

13 



the two examples, stated in Eqs. (26a) and (26b), T]s{y) is displayed in Figs. 4a and 4b, 

respectively. The dashed-line curves in these figures are merely free extrapolations beyond the 

permissible ranges. 

Since it emerges that T]s(y)1S independent of the loss factors 7](F), provided 

77(F)«1 in the range (£) < r < (R + £), these loss factors of the satellite oscillators may, 

indeed, be set equal to zero and nobody would be the wiser. Is that true? 

Finally, it is remarked that the difference between the induced loss factor Tlsiy), stated 

in Eq. (14), and T7^(J) stated in Eq. (19), is the number (R) of satellite oscillators. Clearly, 

Eq. (19) can be derived from Eq. (14) by allowing (R) to increase enough to render 

(£ + £)->! and (£)->0. 

14 



III.      Modal Overlap Condition for Relating the Discrete and the Continuous Domains 

To establish the relationship between the discrete and the continuous domains one may 

define two distinct frequency bands. The first, designated (8<J0r) defines the fair frequency 

territory occupied by each satellite oscillator with respect to its adjacent neighbors; this 

frequency bandwidth is centered on the resonance frequency of that satellite oscillator. The 

expression for this bandwidth is 

SC0r = {(l/2)(ö)r+1-0)r_1) [U(R-l + £-r)-U(2-e-r)] 

+ (öj-^Ml + fi-r) + dCDR-O&R-JUir + S-RfiUir-eMR + e-r) , (27a) 

where U(OC) is the usual unit step function and (£) is less than unity, equal to (1/2), again, 

say. The inverse of the frequency bandwidth (S(Dr) is commonly referred to as the modal 

density (Jlr) of the satellite oscillators; i.e., 

nr = (Scor)~l  ;  e<r<R+e    , (28) 

where the inversion of (SCDr) is carefully executed with respect to the unit step functions [10, 

11]. The second frequency band, designated (AO)r), defines the inherent frequency 

bandwidth of the (r)th satellite oscillator; this bandwidth accounts for the inherent damping of 

this satellite oscillator. The measure of the damping, in turn, defines the loss factor (Tlr). The 

bandwidth (Aß)r) is then stated in terms of the loss factor (Tjr) and the resonance frequency 

(COf) in the form 
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ACOr = (COrr]r)U(r-£)U(R + e-r)   . (27b) 

The ratio (br) of these two frequency bandwidths defines a modal overlap parameter 

{br = (AG)r/8COr) = (nrG)r7]r)}U(r-£)U(R+£-r)   , (29) 

where use is made of Eqs. (27) and (28). 

For a modal overlap parameter (br) that is less than unity; br<\, adjacent satellite 

oscillators reside outside each other's bandwidths. Consequently, the influence of the satellite 

oscillators on the response of the master oscillator, as a function of (y); y = ((D/ C00), can be 

identified individually; each contribution associated with a satellite oscillator stand out 

prominently from the others. An example of such an influence in terms of evaluating the 

induced loss factor T\s{y), as a function of (y) with (br) less than unity, is depicted in 

Fig. 5 [5,7]. On the other hand, for a modal overlap parameter (br) that exceeds the value of 

unity; br>\, adjacent satellite oscillators reside within each other's bandwidths. Therefore, 

their influence on the response of the master oscillator is largely continuous as a function of 

(j); y = (0)/ C0o). The more the modal overlap parameter (br) exceeds the value of unity, 

the more the continuity [7]. An example of such an influence, in terms of evaluating the 

induced loss factor T}s(y), as a function of (y) with (br) exceeding unity, is depicted in 

Fig. 6 [5, 7]. Comparing Fig. 4 with Fig. 5 and with Fig. 6, respectively, serves to expose 

the issue that is central to this paper. Figures 4a and 4b, respectively, overlap prime portions 

of Figs. 6a and 6b only. These prime portions are defined within the range set on (y) in 

Eqs. (26a) and (26b), respectively. No such overlap exists between Figs. 4a and 4b and 
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Figs. 5a and 5b, respectively. Nonetheless, if the undulations in Fig. 5 are appropriately 

averaged, the overlap between Fig. 4 and 6 is extended to include the mean values of Fig. 5 

[7, 12].  [cf. Appendix A.] When (br) becomes small compared with unity the mean values 

alone do not reflect the presence of undulations and, therefore, Fig. 4 cannot serve to 

substitute for Fig. 5. The information that lies in Fig. 5 can hardly be derived from Fig. 4; 

Fig. 4 is akin to Fig. 6 but not to Fig. 5. Since Fig. 4 is derived by replacing the summation 

by integration, it is concluded that this replacement is commensurate with the imposition of 

modal overlap parameters that exceed unity; br > 1. [cf. Appendix A.] An imposition of this 

kind ensures that the evaluations of mean-value data do not conceal information that may render 

the data, at best, ambiguous and, at worst, misleading [8,13]. 

When the modal overlap parameter (br) exceeds unity, the modal overlap condition is 

said to be satisfied. When the modal overlap condition is satisfied, the linear dynamic 

description [S(y) - iT]s(y)] > comprising the sum of the individual linear dynamic descriptions 

of all the satellite oscillators; e.g., typically the term [(y)2A(y,mr,xr,riry] contributed to the 

sum by the (r)th satellite oscillator, may be, well nigh, evaluated by integration 

R _ 
[s(y)~ irisiy)] = O02 X A{y,mr,xr,r]r) 

l 

=> (y)2J(e)     drA{y,m(r),x(r),T](r)}   , (30a) 

where (r), in the second of Eq. (30a), is a continuous and dimensionless variable [2]. 

[cf. Eqs. (6) and (14a).] It is emphasized that the transition, described in Eq. (30a), is 

validated if, and only if, it is implicitly understood that {br), as stated in Eq. (29), exceeds 

unity; namely 
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{br = {nrCOrT]r) > 1} U(r-e) U(R+£-r)   . (3la) 

The assignment of continuity to (r), in Eq. (30a), renders the normalized resonance frequency 

Xr =» X(r) a continuous function of (r), as exemplified in Figs. 2a and 2b [14]. Similarly, 

mr => ffi(r) and T[r => Tftr).   [cf. Figs. 2c and 2d.]  In this rendering, Eqs. (27a) and 

(27b) may be approximated, by smoothing, in the forms 

n(r) = [SG)(r)]-1 - [dO)(r) / dr]~l U(r-£) U(R + £-r)   , (32a) 

Afi)(r) = (D(r)r\{r)   ;   {£)< r<(R + £)   , (32b) 

respectively, where one recognizes that [d(0{r) I d(r)] is, by definition, a positive quantity 

and Eq. (28) is referenced. From Eq. (22) one finds that 

[d(D(r) I d(r)] = [(R + l)/(r) / (00T
l ■ Under the guidance of Eq. (32a) and the 

normalization (scaling) proposed in Eq. (10), Eq. (9) yields the two corresponding modal 

densities 

n(r) = /l(r) = [(Ä + 1)/a>0y(R)]{x(r)}-3 U(r-£) U(R + £-r)   ,      (33a) 

n(r) = 72(F) = [(R + l)/0)o](l-r)2 U(r-£) U(R+£-r)   , (33b) 

respectively, where, again, £ = £(R +1)"1 ,R = R(R +1)"1, r = r(R +1)"1 and 

7(i?) = (7 / 2R). From Eq. (31a), the modal overlap condition is satisfied, in the 

continuous domain, provided 
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{b(r)=b(r)=n(r)G)(r)ri(r)=n(r)0)(r)ri(r)>l} U{r-£) U(R + £-r) . (31b) 

In terms of Eqs. (33a) and (33b), the specific modal overlap conditions, per Eq. (31b), are 

{b(r)=b(r)=[X(r)r2[(R + l)r](f)/Y(R)]>l } U(r-£) U(R + £-r)   , (34a) 

{b(r)=b(r)=[r(l-r)][(R+l)ri(r)]>l} U(r-£) U(R+£-r)   , (34b) 

respectively. It is emphasized that the transition, from the discrete to the continuous domains, 

state in Eq. (30a), is predicated on the validity of Eq. (31), in general, and on Eq. (34) 

specifically for the two examples here pursued. To facilitate the assessment of the transition, 

from the discrete to the continuous domains, it is convenient to scale Eq. (30a). The 

continuous (r) is, in that scaling, normalized by the number (/? +1), as already performed for 

example in Eq. (33). The so normalized continuous (r) is designated (0 and hence, in that 

vein, Eqs. (31)-(34) are to be recast with f -» (f); e.g., in this normalization Eq. (32) is 

written in the form 

{n(Od(0{0 = (R + l)dC) U(£-£) U{R + £-C}   , (35a) 

A0)(0 = 6X0*7(0  , (£) < C < (R+e)  . (35b) 

respectively, where 
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; = r(R + ir   ;   £ = £ (R + ly  ;  R = R(R + Yfl    • (36a) 

The scaling is illustrated in Fig. 3 for the examples depicted in Figs. 2a and 2b. [cf. Eqs. (9) 

and (16).] Employing this scaling in Eq. (30a), one obtains 

C(R+£) _ 
[S(y) -Hlsiy)] = (y)2}(£)     <*r My, m{r), X(r), 7](r)} 

C(R+S) 
(yfi^    di; A{y, /£(£), x(0, V(0) , OOb) 

where (f) and (£) are defined in Eq. (36a).  [cf. Eqs. (10) and (14).] If one further 

assumes that the number (R) of the satellite oscillators is large compared with unity, Eq. (30b) 

becomes 

J: [s(y) -irisiy)] => (yfh^ A{y, fra x(0, mO) 

= [sc(y) -iVsiy)]   . (30c) 

where [SC(y) - iTJsiy)] is defined in Eq. (19) and it follows from Eq. (36a) that 

£-><?   ;   (R+£)-»1   ;  /?->! as R >» 1   . (36b) 
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The modal overlap condition that validates Eqs. (30b) and (30c) is derived, from Eq. (31b), 

the form 

in 

{HO = a>(0 idaKO/dcrl[(R+im01>i} u(e-e) u(R+e-o , (3ic) 

where use is made of Eq. (35a). For the examples quoted in Eq. (9), Eq. (31c) assumes the 

forms 

{HO = [X(OT2 [(R + DTKO/y(R)]>l} U(C-£) U(R+e-0   ,     (37a) 

{HO = Kd-C)] [(/?+1)77(0]>i} U(C-e) U(R+e-o , (37b) 

where in Eq. (37a) 

WOr2 = [i+(i-207(A)]  ;  r(R) = (y/2J?)<(i/2) (38) 

[cf. Eq. (16a).] It emerges, therefore, that the validity of Eqs. (30b) and (30c) demands that 

Eq. (31c), in general, and Eqs. (37a), and (37b) in particular, are obeyed. These latter three 

equations may be cast in the form 

{[(R + l) 7XO]> 

[d\n{0)(0}/dfl 

ir(R){X(0}2] 

Kd-or1 
•} U(s-£) U(R+e-o  , 

(3 Id) 

(37c) 

(37d) 
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The quantity [d\n{CO(Q}I d{] ^ [d\n{x(C)} I dQ, in Eq. (3Id), is the local slope in 

figures of which Figs. 3a and 3b serve as two specific examples; i.e., the examples given in 

Eqs. (37c) and (37d), respectively [14]. [It is noted that Eq. (3 Id) may be cast in the alternate 

form 

T](r) > [d\n{CO(r)}/dr] = [d\n{x(r)}/dr] (31e) 

In Eq. (31e) the local slope is that of curves like those exemplified in Figs. 2a and 2b for the 

continuous (r) [14]. Again, it is emphasized that the relationship between Figs. 2a and 2b 

and Figs. 3a and 3b, respectively, is merely the scale factor (Ä +1). In that sense Eq. (31d) is 

merely the normalized version of Eq. (31e) and, as such, the former is to be preferred when 

comparing situations of varying numbers of satellite oscillators [5].] Equations (37c) and (37d) 

are depicted graphically in Figs. 7a and 7b, respectively. These equations and figures 

exemplify that [77(0] cannot be independently set equal to zero without qualification. The 

lower limit that can be assigned to [77(0] is dependent on the number (R) of satellite 

oscillators plus unity (1). The value of [(* + WO] may be large or small compared with 

unity, but it must remain finite if Eqs. (30b) and (30c) are to be validated. The only way to 

allow for infinitesimal [77(0]'s; i.e., nearly undamped satellite oscillators, is to explicitly or 

implicitly render (R +1)"1 proportionately infinitesimal. In particular, the number of satellite 

oscillators needs to approach infinity at least at the same rate that [77(C)] approaches 

infinitesimal values. Thus, once the modal overlap condition is satisfied, the satellite oscillators 

collectively possess enough damping to account for the physical presence of the induced loss 

factor. 
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Appendix A: A Few Additional Remarks 

In a steady state analysis of the dynamic characteristics of the response of structural 

complexes, many data sets are presented in terms of appropriately averaged values. Such 

presentations are ultimately acceptable as long as these mean values are all the information that 

is either available, sought or both. The loss factor Tls(y) presented in Fig. 6, which pertains 

to a modal overlap parameter (br) that is equal to two; br = 2, simultaneously fits the two 

categories. On the other hand, the loss factor Tls(y) depicted in Fig. 5, which pertains to a 

modal overlap parameter (br) that is equal to one tenth; br = 10-1, does not meet either 

categories. Figure 4, however, cast the data in Fig. 5 in terms of mean values, thus meeting 

the availability category only; the data sought may demand some form of accounting for the 

undulations. The undulations are excursions in the values of T\s{y), as a function of the 

normalized frequency (y), between resonance peaks and anti-resonance nadirs. Since the size 

of the excursions are determined by the modal overlap parameter (br), can a measure of the 

undulations be devised as a function of this parameter? The excursions, it is noted, are the 

larger the smaller are the modal overlap parameters compared with unity. One is reminded in 

this connection, however, that to a first order of approximation results obtained from averaging 

the undulations; e.g., the appropriately averaged values in Fig. 5, as well as the results 

obtained by performing the integration in Eq. (23); e.g., the data depicted in Fig. 4, are found 

to be independent of the individual loss factors of the satellite oscillators [1-7]. Therefore, to 

that approximation the mean values also lack dependence on the modal overlap parameter (br); 

e.g., although there is no demand for equal values of this parameter, there is an overlap 

between Figs. 4 and 6. On the other hand, although the values of the modal overlap 

parameters may be identical in Figs. 4 and 5, there is no overlap between prime regions in 
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these figures, except in a qualified sense. Indeed, when mean values only are to be reported, to 

avoid "a tail wagging a dog," it is to be assumed that the modal overlap parameters are set in 

excess of unity, unless they are otherwise specifically stated [13]. Again, when values are 

derived by appropriately averaging undulating data, the value of the modal overlap parameter 

(br) must accompany the specification of these data; e.g., when Fig. 4 is meant to represent 

the mean values of Fig. 5, the modal overlap parameter (br) must be stated as one tenth; 

br - 1CT1. Otherwise, Fig. 4 is meant to represent Fig. 6 (for which br-T) and not, at all, 

Fig. 5. 

In this connection, it transpires that the first order approximation just discussed is the 

better the larger is the number (R) of the satellite oscillators and the closer is the modal overlap 

parameter (br) to unity. Indeed, for low values of (R) and for large values of (br), erosions 

may beset the exact data obtained via the summation in Eq. (6) [7]. Such simultaneous 

decreases in the number of satellite oscillators and increases in the modal overlap parameters 

may not only render the exact data dependent on these quantities, but may also violate the 

requirement that the contributions to the integral be dominated by the resonances in the 

integrand,  [cf. Eqs. (23) and (24).] Reference 7 suggests that to ensure a first order 

approximation that is free of erosions one must require that br = [br(R + 1)~ ] « 1. On the 

other hand, Eqs. (3 Id), (37c) and (37d) suggest that to ensure that mean values are the prime 

data, (br) must exceed unity; br>\. 
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Oscillators 

Master ^\~ 
Oscillator/ 

t 
Pe 

Fig. 1.    Master oscillator coupled to a set of resonance frequency distributed satellite 

oscillators. The master oscillator is defined by the mass (M) and the stiffness 

(K) and the (r)th satellite oscillator by mass (mr)and stiffness (kr). Only 

the master oscillator is driven, by an external drive Pe(60), generating the 

response Vo(C0) in the master oscillator and the response Vr(CO) in the (r)th 

satellite oscillator. 
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Fig. 2.    Resonance frequency distribution; (*r), and normalized mass distribution; 

(ffir), as functions of the discrete (r) (distinct dots), and X(f) and m(r), as 

functions of the continuous (r) (solid line curves). Number (2?) of satellite 

osciUators is twenty seven; (i? = 27) and mass ratio (Ms IM) is a tenth (10_1). 

a.      (JCr) as specified in Eq. (9a).   b.      (Xr) as specified in Eq. (9b). 
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(jfir), as functions of the discrete (r) (distinct dots), and X(r) and W2(r), as 

functions of the continuous (r) (solid line curves). Number (/?) of satellite 

oscillators is twenty seven; (R = 27) and mass ratio (Ms IM) is a tenth (10_1). 

c.      (mr) as specified in Eq. (9c). d.      (mr) as specified in Eq. (9d). 
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a. For a normalized resonance frequency {Xr) and a normalized mass 

distribution (/%) as specified in Eqs. (9a) and (9c), respectively. 

b. For a normalized resonance frequency (Xr) and a normalized mass 

distribution (Tnr) as specified in Eqs. (9b) and (9d), respectively. 
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a. For a normalized resonance frequency (Xr) and a normalized mass 

distribution (Mr) as specified in Eqs. (9a) and (9c), respectively. 

b. For a normalized resonance frequency (Xr) and a normalized mass 
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